LINUX September 20-24, 2021 z ‘{
PLUMBERS y y g
CONFERENCE y

DSA switches: domesticating a savage beast
Vladimir Oltean




Distributed Switch
Architecture: an overview

* Framework for managing
Ethernet switches

* Driver writer FAQ: should |
write a plain switchdev or a
DSA driver for my hardware?

* switch supports direct
packet I/0 => plain
switchdev

e switch supports indirect
packet I/0O through an
Ethernet port of the host
=> DSA

Regular application binds
socket to network interface

|

swp0 swp1 swp?2 swp3
DSA switch driver

Tag added by Tag consumed by
switch driver switch driver

Unmodified host interface driver

Software
Host interface (ethO) Hardware
Tag consumed by l T Tag added by
switch hardware switch hardware
Switch CPU port
swp0 swp1 swp2 swp3

|

Cable-side packet has
no switch-specific tag



Summary of changes to DSA

e Separation between control plane and data plane packets
e Support for unoffloaded upper interfaces
* RX filtering

» Support for cross-chip bridging in more varied topologies
* Disjoint trees
* “H” trees



Control plane packets

The data plane and bypassme;tfarwarding plane
the control plane

r‘?‘s‘%"}f‘fﬁ %ﬂ;%%
* Different classes of switches %%;%%
* Fully managed Py < 4 v ﬂf%%
« Unmanaged 7 7~ S 2 >
* Lightly managed P < - - T ~_ : ~ f
. - ~ /;{{ :
e tag 8021q can help with the Oy sy
unmanaged and lightly Bz
managed switches, but only
until the bridge claims the ’Sﬁcff% -
VLAN table 2, o
g, e

* must teach the bridge about
data plane packets

e TXforwarding offload: extend
skb->offload _fwd_mark for TX



Offloading software
upper interfaces

e Offloading support added
for LAG and HSR/PRP

* Repaired the software
fallback which got broken
when DSA was integrated
with switchdev

e APl added to switchdev for
drivers to explicitly declare
that they offload a bridge
port

e FDB isolation is still an
issue

Linux systemwith 4 DSAswiich interfaces

b0«
/___.__/ - .
2 // - \\‘\\
// - I \\\
e ,
ungfioaded” \\ 1
A ™,
;,-’ bond( \
/ 4 g
T j . \
[ 490 _ -~ 7 i \
swp,0>< swp1 swp2 T = aswp3
| \
\l A ‘ 1
| |
| |/
| ‘ I
I|.
Station A Station B

1. Station Bsends an ICMP Echo requestio Station A. Station Ais behind an unofioaded
bridge port(bond0),so swp3 mustforward ittowards the CPU.
swp3is an ofioaded bridge port,so Station B's MAC address is learned on this source port

2.The bridge reinjectittowards bond0 which willsend towards either swp0 or swp1
according fo the xmithash policy

4.Inlack of FDBisolation,swp0 willlook up Station B's destination MAC address and
willfind the entry pointing towards swp3,so itwillattemptto shortcircuitthe CPU and
forward towards thatportdirectly. Butforwarding is blocked romswpO towards that
port=>packetis dropped.



RX filtering

* No RX filtering for standalone ports (IFF_UNICAST FLT), just bridged

e Tell the hardware which addresses must be filtered towards the host

* Assisted learning on the CPU port replaces hardware source address learning,
sniffs switchdev FDB events on foreign interfaces

* Port MAC addresses, the bridge device MAC address are offloaded by
switchdev as local/permanent FDB entries

e Still cannot remove CPU port from the flooding domain of user ports

* DSA interfaces might be bridged with foreign interfaces

e Bridge with upper interfaces might become promiscuous (no
IFF_UNICAST_FLT)



Switch topology
changes

e Daisy chains have been
the norm, but crazy
people always like to
“innovate”

* Changes at the cross-chip
notifier level to support
bridging between DSA
user ports in other
circumstances

<==) Marvell tagged frames
{mm) User frames (normal, 802.1q)

— Control interface (MDIO, SPI, 12C..)

sw2p2

-swz p3 -_.SWZ p4



Disjoint trees

NXP LS1028A SoC

eno2
(fsl_enefc)

DSAmaster for felix

CPU port(4)

mscc_felix switch

‘ swOp0

SPI bus (internal)
swpO swp1
DSAmaster for DSAmaster for
sja1105 #1 sja1105 #2
Ethernet link Ethernet link
CPU port (4) CPU port (4) ’
sja1105 switch #1 sja1105 switch #2
(external) (external)
‘ sw1p0 H sw1p1 ‘ swip2 ’

’ swO0p1 ‘ swip2 swip3

swip3 l




H trees

NXPLX2160A

dpmac17
(dpaa2-eth)
DSAmaster for
sja1105 switch #1

SPI bus Ethernet link

dpmac18
(dpaa2-eth)
DSAmaster for
sja1105 switch #2

Ethernet link

Automotive Ethernet
port (2)

CPU port (0) CPU port (0)
sja1105 switch #1 DSA (cascade) - DSA (cascade) sja1105 switch #2
(external) port (1) Etherne‘t ||nk port (1) (external)

Automotive Ethernet Automotive Ethernet Automotive Ethernet
port (3) port (4) port (5)

Automotive Ethernet Automotive Ethernet Automotive Ethernet
port (2) port (3) port (4)

Automotive Ethernet
port (5)




Conclusion

* Transforming the wide variety of DSA switches into something that is
compatible with the network stack’s expectations requires a good
amount of creativity

* The risk is that we might shoehorn them into something that departs
from the use case they were intended for

* For the finer points, be sure to read the full paper with the same
name!
e https://linuxplumbersconf.org/event/11/contributions/949/



https://linuxplumbersconf.org/event/11/contributions/949/

