Scheduler Scalability

Subhra Mazumdar

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

Searching for idle cpus

* select_idle sibling
—select_idle core
—select_idle_cpu
—select_idle_smt

* select_idle_core can iterate all cpus in LLC domain even if only one idle
core is available

* select_idle_cpu tries to find a idle cpu in LLC domain but iterates only ‘nr’
cpus
—nr is determined by average idle time of cpu and avg cost of scanning LLC domain
— Has arbitrary fuzz factor
— Can end up scanning the entire socket

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 2

select_idle cpu

* Hard to find any formula that is dynamic and yet works well for all cases
— Better to put a upper bound on the scan (‘nr’)

* What should the bounds be?

— Experimented with some upper and lower bounds (on SMT2, SMT8)
— Upper bound of 2 cores and lower bound of 1 core seems to work well

— Gives a chance to find an idle cpu outside of the current core for all kinds of cpu id
enumerations

* How to avoid localization?

— Have a per cpu variable to track the search limit
— Will start searching from there next time

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 3

select_idle core

* Has a dynamic switch to disable scanning but still a bottleneck

* Can we have data structures to do it fast?
— Scheduler fast path is very sensitive
— Just disabling idle core search improves context switch intensive workload (OLTP)
* Have a new sched feature SIS _CORE for disabling idle core search in run
time

* Improves most workloads, regresses some on some some architectures
(hackbench on SMTS8)

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

Results: 2 socket, 44 cores, 88 cpus Intel x86
(select_idle cpu)

Oracle DB TPC-C

Hackbench Uperf pingpong with msg_size=8k

Users %gain
Groups Base New %gain Threads Base New %gain 20 0.68
1 0.5816 0.5903 -1.5 8 45.36 46.28 2.01 10 1.03
2 0.6428 0.5843 9.1 16 87.81 89.67 2.12 60 1.78
4 1.0152 0.9965 1.84 32 151.19 1535 1.53 20 0.92
8 1.8128 1.7921 1.14 48 190.2 194.79 241 100 0.9
16 3.1666 3.1345 1.01 64 190.42 202.9 6.55 120 0.48
32 5.6084 5.5677 0.73 128 323.86 34356 6.08 140 116
160 2.64
180 1.94
200 2.8
220 2.29

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

Results: 2 socket, 44 cores, 88 cpus Intel x86
(select_idle _cpu + NO SIS CORE)

Uperf pingpong with msg_size=8k

Hackbench
Groups Base New %gain
1 0.5816 0.5835 -0.33
2 0.6428 0.5752 10.52
4 1.0152 0.9946 2.03
8 1.8128 1.7619 2.81
16 3.1666 3.1275 1.23
32 5.6084 5.5856 0.41

ORACLE

Threads Base New %gain
8 45.36 46.94 3.48
16 87.81 91.75 4.49
32 151.19 167.74 10.95
48 190.2 200.57 5.45
64 190.42 226.74 19.07
128 323.86 348.12 7.49

Oracle DB TPC-C

Users %gain
20 0.56
40 1.73
60 -0.05
80 1.75
100 1.51
120 2.44
140 3.4
160 3.62
180 4.1
200 2.33
220 1.25

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

Avoid scheduling overhead altogether

* Profiling context switch intensive workloads will show few common hot
stacks calling schedule()

* pipe_read & pipe_write are among them
— Have busy waiting mechanism for certain amount of time
— Networking has similar mechanism already

* Can we have dynamic formula for optimal spin time?
— Different workloads on different architectures will have different optimum
— Have a tunable that can be set for specific workloads

* Workloads?

— Obvious: Hackbench pipe, Unixbench pipe
—To try: OLTP

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 7

Results: 2 socket, 36 cores, 72 cpus Intel x86 (spin=10us)

Hackbench pipe

Groups Base New %gain
1 0.6742 0.6842 -1.48
2 0.7794 0.7116 8.7

4 0.9744 0.8247 15.36
8 2.0382 1572 22.87
16 5.5712 2.7989 49.76
24 7.9314 3.962 50.05

Unixbench pipe

Base New %gain
1 copy 372.2 772.9 107.7
72 copies 11298.2 17089.9 51.3

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

Takeaways..

* Optimizing the scheduler for performance is hard
— Always double edged sword

— Satisfying all workloads on all architectures at all utilizations
— Scheduler feature may come to rescue

* Will LLC domain continue to get bigger?
— Intel has 28 cores per socket

— AMD has 32 cores BUT is MCM (4 NUMA nodes in a socket)
— ARM?

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 9

Questions?

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

