
A pure Go eBPF library
Lorenz Bauer (Cloudflare), Joe Stringer (Cilium)



Our BPF use case

● Packet wrangling in XDP and TC
● Long-running service managing eBPF, 

written in Go

● Cloudflare: L4 load balancer
● Cilium: Container security for Kubernetes

2



Available libraries

● libbpf: the canonical implementation
Lives in the kernel repo; C

● libbcc: focused on tracing
Wraps libbpf, LLVM

3



libbcc

● Heavy runtime (LLVM dependency)
● Difficult to build and package
● github.com/iovisor/gobpf; uses CGo

4



libbpf

● Features land here
● Few external dependencies
● Relatively lightweight

No fully fledged Go wrapper

5



The pure-Go syndrome

● Lots of rewriting non-Go libraries in Go
● github.com/vishvanda/netlink, ...

6



Problems with CGo

● CGo calls are relatively expensive
○ ~10% overhead for a simple map_lookup_elem

● Bad developer experience
○ Link to library: OS packages, ABI, etc.
○ Copy source code: difficult to keep up-to-date

7



Problems with CGo contd.

● Makes tooling less useful
○ Cross-compilation
○ Debuggability

■ Profiling
■ Tracing

8



github.com/cilium/ebpf

● You guessed it: pure Go
● To write services managing eBPF

○ Load programs
○ Modify maps
○ Collect metrics, events, etc.

● MIT

9



Goals

● Cover networking use-cases
● Minimal external dependencies
● Well tested, highly testable
● Solve common problems

10



Non-goals

● Tracing: use libbcc
● Specific support for all hook points

○ Can live in separate libraries

11



Step 1: Map and Program

● Map
○ CRUD
○ Pinning
○ Misc: nested maps, per CPU array

● Program
○ Create and Pin

12



Step 2: Perf events

● Support for PERF_EVENT_ARRAY
● Probably as sub-package

13



In the future

● ELF loader
● BTF
● Global variables

14



Contributors contributors contributors!

● Does this sound useful?
● If not, why?

15



Questions?


