
Reworking of KVA allocator in Linux kernel

Linux Kernel Engineer
Sony Mobile(Lund, Sweden)

Vlad Rezki
urezki@gmail.com

Lisbon-2019

mailto:urezki@gmail.com


Reworking of KVA allocator in Linux kernel

● Motivation
● Special requirements for the KVA allocator
● Current allocation scheme
● Current allocation scheme drawbacks
● New allocation scheme
● Performance analysis
● Performance test results
● Contribution
● Todo-list



Motivation

1. High demand in big data
2. Work-loads which are critical to time and latency

● audio/video/8K high resolution/5G areas(mobile segment)
● KVA is getting more and more used nowadays in the kernel

○ filesystems, kernel stacks, BPF, percpu, fork path, drivers, etc
○ new kvmalloc()/kvfree() interface introduced in 2017

■ If the slab fails(due to big size request)
■ fallback to vmalloc(bypassing the OOM killer)



Motivation(cont.)

Initiative of improving KVA allocator comes from getting many issues 
with allocation time, simply saying, sometimes it is terribly slow. As a 
result many workloads are affected by that slowness:

● Bluetooth audio skips
● Framedrops in UI and video playback
● Application launch times and etc.



Special requirements for the KVA allocator

● Support zone allocations in KVA space
● Sequential allocation to maximize locality
● Minimize external fragmentation



Support zone allocations in KVA space

See the picture and explanation below:

vmalloc address space

VMALLOC_START VMALLOC_END

kernel 
modules 

address space
offset

MODULES_VADDR MODULES_END

fixmaps

FIXADDR_START 4 GiB

Continuous virtual address space
1 ULONG_MAX

zone_a zone_b zone_c



Sequential allocation to maximize locality
● There is at least one important issue if an allocation is not sequential

○ Waste of free space in a specific zone(if included into another one)

1 2 3 4 5 6 7 8

zone_0

zone_1

1 2 3 4 5 6 7 8
zone_1

zone_0

a) Sequential allocation
in zone_0

b) Random allocation
in zone_0



Minimize external fragmentation

● Reduce implementation overhead. It is wasted of memory for the 
internal data structures of the allocator implementation and 
bookkeeping.

● Satisfy an allocation request. External fragmentation occurs when 
free blocks of memory are available for allocation but they are too 
small.

● Improve allocation time. Due to high number of internal objects an 
allocation time usually gets increased.



Current allocation scheme (high level)

This allocator uses a double linked list containing busy blocks. Also, 
those blocks are sorted by the red-black tree. The tree allows to find a 
start address of required zone where an allocation has to be done.

To allocate a new memory block the search is done over busy list 
iteration until a suitable hole is found between two busy areas.

Therefore, each time a new allocation occurs internal data structures 
of the allocator get increased.

B2 B3 B4 B5B1



Current allocation scheme(high level cont.)

As an example let’s consider 5 allocated memory blocks: B1, B2, B3, 
B4, B5 and three holes: F1, F2, F3. In order to allocate a new block we 
have to iterate over the list(B1-B5) checking a hole size between, until 
a fitting base is found:

B3B1 B2 B4 B5

hole hole hole

KVA space



The red-black tree is maintained to have a fast access to allocated 
earlier object when it is deallocated(not limited to it).

Current allocation scheme(high level cont.)

B2 B4B1 B3 B5

hole hole hole

1 6 14 16 20105 8 11

B6

12

14

166

1 10



Current allocation scheme drawbacks

There are two main issues with current method:

● It has O(N) complexity
● Due to external fragmentation and different permissive parameters 

an allocation can take a long time(milliseconds).



New allocation scheme

● Allocate from free blocks(is built during early boot)
● The new allocation method uses an augment red-black tree
● All free blocks are sorted in ascending order by the tree
● Linked list is used for O(1) access to prev/next

○ When deallocate
○ Find a spot(tree traversal)
○ Fast merge with prev/next nodes

● Nodes are augmented with the size of maximum available block 
in its left or right subtree

● Complexity: ~O(log(N))



New allocation scheme(cont.)

During initializing phase the KVA memory layout is organized into one 
free area that has 1 - ULONG_MAX range(can be more and depends 
on ARCH).

Here we have 5 free blocks with different sizes which are sorted in 
order of increasing addresses. That is just example.

1

(1 - ULONG_MAX) range

2 3 4 5

Free KVA space



New allocation scheme(cont.)

N1 - starts from 2, size is 2, max subtree size is 2

N2 - starts from 6, size is 3, max subtree size is 12

N3 - starts from 10, size is 12, max subtree size is 12

N4 - starts from 23, size is 3, max subtree size is 12

N5 - starts from 27, size is 11, max subtree size is 11
10

12/12

23
3/12

27
11/11

6
3/12

2
2/2

N1

N2

N3

N4

N5

2 b b3 12 b 3 b 11

2 2723106

N1 N2 N3 N4 N5



New allocation scheme(cont.)

Allocation

● Start tree traversal from the root node
● Check left subtree max size
● Follow the left subtree if request is <= available size
● Go toward the block that fits
● When the block is found - it is split(3 cases)

○ LE_FIT/RE_FIT
○ FL_FIT
○ NE_FIT



get_left_sub_max_size

node = node->rb_left

node is 
NULL

ret

start

node_size
<

req_size
node = node->rb_right

max_size
>=

req_size

10
12/12

23
3/12

27
11/11

6
3/12

2
2/2

N1

N2

N3

N4

N5

search parametersnode = rb_root

Y

Y

Y

N

N

N

Block diagram of search algorithm



New allocation scheme(cont.)

10
12/12

23
3/12

27
11/11

6
3/12

2
2/2

N1

N2

N3

N4

N5

10
8/12

23
3/12

27
11/11

6
3/12

2
2/2

N1

N2

N3

N4

N5

10
8/8

23
3/11

27
11/11

6
3/8

2
2/2

N1

N2

N3

N4

N5

b) allocate 4 pages

10
12/12

23
3/12

27
11/11

6
3/12

2
2/2

N1

N2

N3

N4

N5

a) allocate 1 page

N2

N3

N4

N5

N1

23
3/12

27
11/11

6
3/12

2
1/1

10
12/12

A
B/C

A - block start address
B - block size
C - subtree max size

split updatefind

splitfind



New allocation scheme(cont.)

First case: Requested size is 3 PAGES. If F1/F2 are small and F3 is 
bigger than 3 PAGES, we just shrink F3 to remaining size.

F1 F2 F3 F4

give it to user



New allocation scheme(cont.)

Second case: Requested size is 3 PAGES. If F1/F2 are small and 
F3’s size is 3 PAGES, we just remove F3 from our internal data 
structures.

F1 F2 F3 F4

give it to user



New allocation scheme(cont.)

Third case: Requested size is 3 PAGES. If F1/F2 are small, F3 is 
bigger than 3 PAGES and the requested size and alignment does not 
fit left nor right edges. In this case during splitting we build a new 
remaining right area and place it back.

  
NF1 F2 F3 F4F3

Shrunk F3 New remaining right free space of F3

give it to user



New allocation scheme(cont.)

Summarizing. A “subtree-max-size” is populated back(upper levels) 
when block:

● is split(allocation path);
● is inserted to the tree(free path);
● is increased(merging path).

Please note that, it does not mean that upper parent nodes and their 
“subtree-max-size” are recalculated all the time up to the root node.



New allocation scheme(cont.)

De-allocation: red-black tree allows efficiently find a spot in the tree whereas a 
linked list allows fast merge of de-allocated memory chunks with existing free 
blocks creating large coalesced areas.

allocated allocated allocated allocated

allocated freed allocated allocated

allocated freed allocated freed

allocated freed freedfreed

allocated freed

freed freed

freed



Performance analysis

● Developed special microbenchmark to analyse impact
● Available since 5.1 kernel
● Integrated with kernel self-tests
● Available under tools/testing/selftests/vm/
● The name is “test_vmalloc.sh”
● Is a kernel module
● The test driver has two modes

○ Performance analysis mode
○ Stressing mode



Performance test results
I use the test_vmalloc.sh that can simulate random allocations on all CPUs. 
Please have a look at time taken by my i5-3320M machine to complete the test:

Default
urezki@pc637:~$ time sudo ./test_vmalloc.sh test_repeat_count=1
    116m58.38s real     0m00.09s user     0m00.00s system
urezki@pc637:~$

Rework
urezki@pc638:~$ time sudo ./test_vmalloc.sh test_repeat_count=1
    3m37.78s real     0m00.02s user     0m00.00s system
urezki@pc638:~$

116 minutes against 3 minutes. Rework ~39 times faster!









Contribution

Vmalloc benchmark and stress-test suite is in 5.1:
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=153178edc7819b5c550e5d498d50697ff9d5f223

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=3f21a6b7ef207892841feecc3b9216e1a29c745f

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=a05ef00c97900f69f6e69d88e8a657b7a4ef8cbd

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=6bc3fe8e7e172d5584e529a04cf9eec946428768

Stability fixes are in 5.1(was found by test driver):
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=afd07389d3f4933c7f7817a92fb5e053d59a3182

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=3319f8b3a38be63ff5bd31368a6996dfde0efab9

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=287819acc18b30c528d1c76b5b54e28e42ee54cc

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=153178edc7819b5c550e5d498d50697ff9d5f223
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=3f21a6b7ef207892841feecc3b9216e1a29c745f
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=a05ef00c97900f69f6e69d88e8a657b7a4ef8cbd
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=6bc3fe8e7e172d5584e529a04cf9eec946428768
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=afd07389d3f4933c7f7817a92fb5e053d59a3182
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=3319f8b3a38be63ff5bd31368a6996dfde0efab9
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/commit/?id=287819acc18b30c528d1c76b5b54e28e42ee54cc


Contribution(cont.)

The new KVA rework is in 5.2:

https://github.com/torvalds/linux/commit/a6cf4e0fe3e740ed7af39fdda721e1ac12247dd3#diff-1662e6f7a8ab98f610f1f19d89b78c9f

https://github.com/torvalds/linux/commit/bb850f4dae4abb18c5ee727bb2d6df9ca47ede49#diff-1662e6f7a8ab98f610f1f19d89b78c9f

https://github.com/torvalds/linux/commit/68ad4a3304335358f95a417f2a2b0c909e5119c4#diff-1662e6f7a8ab98f610f1f19d89b78c9f

https://github.com/torvalds/linux/commit/4d36e6f8040486f5945a3ba8a741eafe9d1d023a#diff-1662e6f7a8ab98f610f1f19d89b78c9f

https://github.com/torvalds/linux/commit/68571be99f323c3c3db62a8513a43380ccefe97c#diff-1662e6f7a8ab98f610f1f19d89b78c9f

https://github.com/torvalds/linux/commit/afd07389d3f4933c7f7817a92fb5e053d59a3182#diff-1662e6f7a8ab98f610f1f19d89b78c9f

https://github.com/torvalds/linux/commit/153178edc7819b5c550e5d498d50697ff9d5f223#diff-1662e6f7a8ab98f610f1f19d89b78c9f

...

https://github.com/torvalds/linux/commit/a6cf4e0fe3e740ed7af39fdda721e1ac12247dd3#diff-1662e6f7a8ab98f610f1f19d89b78c9f
https://github.com/torvalds/linux/commit/bb850f4dae4abb18c5ee727bb2d6df9ca47ede49#diff-1662e6f7a8ab98f610f1f19d89b78c9f
https://github.com/torvalds/linux/commit/68ad4a3304335358f95a417f2a2b0c909e5119c4#diff-1662e6f7a8ab98f610f1f19d89b78c9f
https://github.com/torvalds/linux/commit/4d36e6f8040486f5945a3ba8a741eafe9d1d023a#diff-1662e6f7a8ab98f610f1f19d89b78c9f
https://github.com/torvalds/linux/commit/68571be99f323c3c3db62a8513a43380ccefe97c#diff-1662e6f7a8ab98f610f1f19d89b78c9f
https://github.com/torvalds/linux/commit/afd07389d3f4933c7f7817a92fb5e053d59a3182#diff-1662e6f7a8ab98f610f1f19d89b78c9f
https://github.com/torvalds/linux/commit/153178edc7819b5c550e5d498d50697ff9d5f223#diff-1662e6f7a8ab98f610f1f19d89b78c9f


Todo-list
Reduce lock contention

■ Get rid of one global spin lock
■ split the vmap_area_lock to

a. “busy tree” protection(allocated areas)
b. “free tree” protection(free space)
c. “lazily-freed” areas protection

Because of new approach the splitting is possible since a vmap_area 
object can only be in one of the three different states: a, b, c



Todo-list(cont.)
Reduce lock contention(cont.)

■ To use more efficient data structure
■ B-tree for organizing free memory layout
■ Splay-tree
■ etc.

■ To implement “lazy” tree fixups
■ Cache last accessed node to optimize traversal



Intel(R) Xeon(R) W-2135 CPU @ 3.70GHz 12xCPUs
23060734@seldlx26551:~# ./test_vmalloc.sh sequential_test_order=1&
23060734@seldlx26551:~# perf top -a -U

 82.58%  [kernel]          [k] native_queued_spin_lock_slowpath
   1.85%  [kernel]          [k] alloc_vmap_area
   1.43%  [kernel]          [k] clear_page_erms
   1.26%  [kernel]          [k] _raw_spin_lock
   1.17%  [kernel]          [k] get_page_from_freelist
   1.12%  [kernel]          [k] __alloc_pages_nodemask
   0.78%  [kernel]          [k] insert_vmap_area.constprop.49
   0.75%  [kernel]          [k] vunmap_page_range
   0.66%  [kernel]          [k] vmap_page_range_noflush
   0.61%  [kernel]          [k] find_vmap_area
   0.59%  [kernel]          [k] free_vmap_area_noflush
   0.56%  [kernel]          [k] remove_vm_area
   0.43%  [kernel]          [k] _extract_crng
   0.41%  [kernel]          [k] rb_erase
   0.39%  [kernel]          [k] __free_pages
   0.39%  [kernel]          [k] __purge_vmap_area_lazy
   0.36%  [kernel]          [k] memset_erms
   0.35%  [kernel]          [k] free_unref_page
   0.25%  [kernel]          [k] chacha_permute

<annotate native_queued_spin_lock_slowpath>
           │       test       %eax,%eax
           │     ↓ jne        18d                              
           │     rep_nop():
 72.63 │184:   pause     
           │     __read_once_size(): 
  9.95  │       mov        0x8(%rdx),%eax        
           │     native_queued_spin_lock_slowpath():
  0.01  │       test       %eax,%eax                
  0.62  │     ↑ je         184
           │     __read_once_size():
<annotate native_queued_spin_lock_slowpath>



Reworking of KVA allocator in Linux kernel

Linux Kernel Engineer
Sony Mobile(Lund, Sweden)

Vlad Rezki
urezki@gmail.com

Lisbon-2019

mailto:urezki@gmail.com

