

GCC’s -fanalyzer option

David Malcolm
<dmalcolm@redhat.com>

Overview

● What is it?
● Implementation details
● Current strengths and limitations
● Plans for GCC 11
● Ideas for future directions

The -fanalyzer option

● Added by me in GCC 10
● -fanalyzer enables a new interprocedural

pass, implementing 15 new warnings
● Performs a much more expensive

analysis of the code than traditional
warnings

New Warnings

● -Wanalyzer-double-free
● -Wanalyzer-use-after-free
● -Wanalyzer-free-of-non-heap
● -Wanalyzer-malloc-leak

● -Wanalyzer-possible-null-argument
● -Wanalyzer-possible-null-

dereference
● -Wanalyzer-null-argument
● -Wanalyzer-null-dereference

-Wanalyzer-double-fclose
-Wanalyzer-file-leak

-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-use-of-pointer-in-
stale-stack-frame

-Wanalyzer-unsafe-call-within-
signal-handler

-Wanalyzer-tainted-array-index

-Wanalyzer-exposure-through-
output-file

A simple example

Why?

● The earlier a bug is found, the better
● Embedding checks in the compiler is the

earliest possible point
– Ideally, we will never hear about bugs found

by this feature: they’d get fixed in the Edit-
Compile-Debug cycle and never make it into
published patches/repositories

Why? (2)

● The programmer can see the diagnostics as he or
she works on the code, rather than at some later
point.
– Belief: if the analyzer is fast enough and has a good

enough signal:noise ratio, many people would opt-in to
deeper but more expensive warnings

– I'm aiming for 2x compile time as my rough estimate of
what's reasonable in exchange for being told up-front
about various kinds of pointer snafu)

Why? (3)

● But clang-analyzer exists…
– GCC and llvm both exist
– We have two different FLOSS toolchains

● Competition is good
● GNU should have an analyzer in its toolchain

Implementation Details

● Using state machines to model APIs
● E.g.

– “PTR = malloc(…);”: PTR → unchecked
– “if (PTR)”:

● True edge: PTR → nonnull
● False edge: PTR→ null

– “free(PTR);”: PTR → freed
– “free(PTR);” when PTR is “freed”:

● Warn about double-free of PTR

Initial Approach

● What’s the minimum viable analyzer for detecting double-
free bugs?

● Attempted to implement the approach from the Stanford
Checker

● But the diagnostics from my implementation were
inscrutable
– Why is -fanalyzer warning about FOO ?

● How can it happen?
● If I can’t debug this, how is the user meant to figure it out?

Revised Implementation

● Emit control-flow paths to the user
– Need to convince the user of the

correctness of the problem
– Without overwhelming them (not yet

achieved)

Graph-based
implementation

● Build an “exploded graph” combining both control-flow and state
– A directed graph
– Each node is a (point, state) pair
– Terminology from "Precise Interprocedural Dataflow Analysis via Graph

Reachability" (Thomas Reps, Susan Horwitz and Mooly Sagiv) 1995

● Detect problems when unexpected state occurs at a point
● Same approach as used by clang analyzer
● Tension between precision of state-modeling vs ensuring

termination and not bloating memory

(example exploded graph)

Soundness and
completeness?

● Different communities have different definitions, one is:
– “Soundness”: no false negatives
– “Completeness”: no false positives

● -fanalyzer is neither sound nor complete
– It attempts to explore "interesting" paths through the code and

generate meaningful diagnostics
– but it will merge states to try to keep the analysis tractable
– and the states are abstract

● over-approximations in some ways, under-approximations in others

Integration within GCC

● Works on GIMPLE SSA
– I chose this in the hope of making it easier to support

LTO
– But puts it at the mercy of optimization options, perhaps

should run earlier?

● The implementation is read-only: it doesn’t attempt
to change anything, just emit warnings

● Assumes garbage-collector doesn’t run

Algorithm

● First: build the exploded graph
– Worklist of (point, state) nodes

● Priority queue (e.g. group points together)
● Merge nodes at a point when states are

sufficiently similar

– Prepopulate worklist with entrypoints to the
public functions of the TU

Algorithm (2)

● First: build the exploded graph (continued)
– Process (point, state) nodes in the worklist
– Record diagnostics in node (e.g. “double free”)
– Find successor nodes, add edges

● Cache hits vs cache misses
● Ideally converge on a solution where we’re hitting pre-existing nodes

– Give up when limits are hit
● Too many states at one point
● Too many nodes overall

Algorithm (3)

● Having built the graph and saved
diagnostics…

● Deduplicate diagnostics: partition
them
– find the shortest feasible path for each

partition

Algorithm (4)

● Build a list of events along the path
● Apply peephole optimizer to try to only show the

most pertinent events
● Emit the diagnostic

– Precision-of-wording hooks:
● returning possibly-NULL pointer to 'make_obj' from

'allocator'
● second 'free' here; first 'free' was at (1)

C is hard

● Arbitrary pointers
● Casts and unions
● setjmp/longjmp
● Dynamic allocation
● etc...

Tracking state

● Abstraction of possible states of
variables and memory
– Hierarchy of “regions” e.g.:

● The stack
– Frame for current function

● A local array
● An element within the array

Tracking state (2)

● Symbolic values:
– Constants
– Initial value of a region

● e.g. initial value of “ptr→field” at the start of the analysis path

– Pointer to a region (e.g. “&x”)
– Compound values (e.g. “x + y”)
– “Conjured values” at a statement (e.g. when an escaped region could be

clobbered by a call to an external function)
– “Unknown” for when we need to give up
– etc

Tracking state (3)

● Program state has 4 parts:
– A “store”: bindings from regions to values
– Constraints (e.g. “INIT_VAL(p) != 0”)
– The list of function frames in the stack [*]
– State-machine states [*]

● e.g. malloc: “INIT_VAL (p_23)”: “unchecked”
● e.g. signal: global state: “in signal handler”

[*] == can prevent merging of states

Current Status

● Experimental prototype for C, for early
adopters only.

● But has found CVE-2020-1967 in
OpenSSL, a NULL pointer dereference
in error handling.
– and various error-handling bugs in elfutils

https://www.openssl.org/news/secadv/20200421.txt

Strengths and Limitations

● Interprocedural, with LTO support
– ...but current implementation of call

summaries is just a placeholder

Strengths and Limitations
(2)

● Cute ASCII art showing control flow
– ...but it’s too verbose, and can

overwhelm the user

Strengths and Limitations
(3)

● GCC 10 implementation of state had
at least two major design flaws
– Led to explosions of state where state

should have been merged but wasn’t

GCC 11 plans

● GCC development cycle is typically:
– April → October: 7 months of feature

development
– November → March: 5 months of

bugfixing/stabilization
– So about two more months of feature work

for GCC 11

GCC 11 plans (2):
unbreaking the basics

● Big rewrite of state-tracking
– Landed in trunk on 2020-08-13 (about 4

months work)
– Fixed the two flaws mentioned earlier
– State explosions still happen, but are

much more tractable

GCC 11 plans (3): scaling
up to work on real code

● Fixing scaling issues so that -fanalyzer can be
used on real-world C code
– State explosions
– Ludicrously verbose diagnostics

● e.g. for CVE-2005-1689 (krb5 double-free)
– was 1187 lines of stderr
– GCC 10: 170 lines
– trunk: 57 lines
– Ideal: even lower

GCC 11 plans (4): new
features

● Generalizing the malloc/free and FILE checking to
arbitrary acquire/release API pairs
– An attribute for labeling function decls as acquire/release pairs

● Start on C++ support
– new/delete needs the above
– Exception-handling
– ...etc

● Lots more ideas...

Future Plans

● Other state machines
– Prototype of taint analysis
– Prototype of information leakage

● Bounds-checking
● Plugin support

– Kernel ideas?
● User space vs kernel space pointers
● Interrupts enabled vs disabled

Q&A

● Thanks for listening!
● Thanks to LPC for hosting us
● Project homepage:

https://gcc.gnu.org/wiki/DavidMalcolm/
StaticAnalyzer

https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer
https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer

Bonus Slides

Why do it in compiler?

● Make it easy to verify that all your source is being checked
– Same source files, same preprocessor defines, etc

● Same parser
– "The C language does not exist; neither does Java, C++, and C#. While a

language may exist as an abstract idea, and even have a pile of paper (a
standard) purporting to define it, a standard is not a compiler. What
language do people write code in? The character strings accepted by their
compiler.” (Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton,
Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, Dawson
Engler)

"A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in t
he Real World"

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

	Title
	Overview
	What is it?
	New Warnings
	Simple Example
	Simple Example (2)
	Rationale
	Rationale (2)
	Rationale (3)
	Implementation Details
	Example State Machine
	Initial Approach
	Revised Implementation
	Graph-based Implementation
	Exploded Graph Example
	Soundness/completeness
	Integration within GCC
	Algorithm
	Algorithm (2)
	Algorithm (3)
	Algorithm (4)
	C is hard
	Tracking state
	Tracking state (2)
	Tracking state (3)
	Current Status
	Strengths and Limitations
	Strengths and Limitations (2)
	Strengths and Limitations (3)
	GCC 11 plans
	GCC 11 plans (2)
	GCC 11 plans (3)
	GCC 11 plans (4)
	Future Plans
	Q&A
	Bonus Slides
	Why do it in the compiler?

