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Overview

● What is it?
● Implementation details
● Current strengths and limitations
● Plans for GCC 11
● Ideas for future directions



  

The -fanalyzer option

● Added by me in GCC 10
● -fanalyzer enables a new interprocedural 

pass, implementing 15 new warnings
● Performs a much more expensive 

analysis of the code than traditional 
warnings



  

New Warnings

● -Wanalyzer-double-free
● -Wanalyzer-use-after-free
● -Wanalyzer-free-of-non-heap
● -Wanalyzer-malloc-leak

● -Wanalyzer-possible-null-argument
● -Wanalyzer-possible-null-

dereference
● -Wanalyzer-null-argument
● -Wanalyzer-null-dereference

-Wanalyzer-double-fclose
-Wanalyzer-file-leak

-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-use-of-pointer-in-
stale-stack-frame

-Wanalyzer-unsafe-call-within-
signal-handler

-Wanalyzer-tainted-array-index

-Wanalyzer-exposure-through-
output-file



  

A simple example



  



  

Why?

● The earlier a bug is found, the better
● Embedding checks in the compiler is the 

earliest possible point
– Ideally, we will never hear about bugs found 

by this feature: they’d get fixed in the Edit-
Compile-Debug cycle and never make it into 
published patches/repositories



  

Why? (2)

● The programmer can see the diagnostics as he or 
she works on the code, rather than at some later 
point.
– Belief: if the analyzer is fast enough and has a good 

enough signal:noise ratio, many people would opt-in to 
deeper but more expensive warnings

– I'm aiming for 2x compile time as my rough estimate of 
what's reasonable in exchange for being told up-front 
about various kinds of pointer snafu)



  

Why? (3)

● But clang-analyzer exists…
– GCC and llvm both exist
– We have two different FLOSS toolchains

● Competition is good
● GNU should have an analyzer in its toolchain



  

Implementation Details

● Using state machines to model APIs
● E.g.

– “PTR = malloc(…);”: PTR → unchecked
– “if (PTR)”:

● True edge: PTR → nonnull
● False edge: PTR→ null

– “free(PTR);”: PTR → freed
– “free(PTR);” when PTR is “freed”:

● Warn about double-free of PTR



  



  

Initial Approach

● What’s the minimum viable analyzer for detecting double-
free bugs?

● Attempted to implement the approach from the Stanford 
Checker

● But the diagnostics from my implementation were 
inscrutable
– Why is -fanalyzer warning about FOO ?

● How can it happen?
● If I can’t debug this, how is the user meant to figure it out?



  

Revised Implementation

● Emit control-flow paths to the user
– Need to convince the user of the 

correctness of the problem
– Without overwhelming them (not yet 

achieved)



  

Graph-based 
implementation

● Build an “exploded graph” combining both control-flow and state
– A directed graph
– Each node is a (point, state) pair
– Terminology from "Precise Interprocedural Dataflow Analysis via Graph 

Reachability" (Thomas Reps, Susan Horwitz and Mooly Sagiv) 1995

● Detect problems when unexpected state occurs at a point
● Same approach as used by clang analyzer
● Tension between precision of state-modeling vs ensuring 

termination and not bloating memory



  

(example exploded graph)



  

Soundness and 
completeness?

● Different communities have different definitions, one is:
– “Soundness”: no false negatives
– “Completeness”: no false positives 

● -fanalyzer is neither sound nor complete
– It attempts to explore "interesting" paths through the code and 

generate meaningful diagnostics
– but it will merge states to try to keep the analysis tractable
– and the states are abstract

● over-approximations in some ways, under-approximations in others



  

Integration within GCC

● Works on GIMPLE SSA
– I chose this in the hope of making it easier to support 

LTO
– But puts it at the mercy of optimization options, perhaps 

should run earlier?

● The implementation is read-only: it doesn’t attempt 
to change anything, just emit warnings

● Assumes garbage-collector doesn’t run



  

Algorithm

● First: build the exploded graph
– Worklist of (point, state) nodes

● Priority queue (e.g. group points together)
● Merge nodes at a point when states are 

sufficiently similar

– Prepopulate worklist with entrypoints to the 
public functions of the TU



  

Algorithm (2)

● First: build the exploded graph (continued)
– Process (point, state) nodes in the worklist
– Record diagnostics in node (e.g. “double free”)
– Find successor nodes, add edges

● Cache hits vs cache misses
● Ideally converge on a solution where we’re hitting pre-existing nodes

– Give up when limits are hit
● Too many states at one point
● Too many nodes overall



  

Algorithm (3)

● Having built the graph and saved 
diagnostics…

● Deduplicate diagnostics: partition 
them
– find the shortest feasible path for each 

partition



  

Algorithm (4)

● Build a list of events along the path
● Apply peephole optimizer to try to only show the 

most pertinent events
● Emit the diagnostic

– Precision-of-wording hooks:
● returning possibly-NULL pointer to 'make_obj' from 

'allocator'
● second 'free' here; first 'free' was at (1)



  

C is hard

● Arbitrary pointers
● Casts and unions
● setjmp/longjmp
● Dynamic allocation
● etc...



  

Tracking state

● Abstraction of possible states of 
variables and memory
– Hierarchy of “regions” e.g.:

● The stack
– Frame for current function

● A local array
● An element within the array



  

Tracking state (2)

● Symbolic values:
– Constants
– Initial value of a region

● e.g. initial value of “ptr→field” at the start of the analysis path

– Pointer to a region (e.g. “&x”)
– Compound values (e.g. “x + y”)
– “Conjured values” at a statement (e.g. when an escaped region could be 

clobbered by a call to an external function)
– “Unknown” for when we need to give up
– etc



  

Tracking state (3)

● Program state has 4 parts:
– A “store”: bindings from regions to values 
– Constraints (e.g. “INIT_VAL(p) != 0”)
– The list of function frames in the stack [*]
– State-machine states  [*]

● e.g. malloc: “INIT_VAL (p_23)”: “unchecked”
● e.g. signal: global state: “in signal handler”

[*] == can prevent merging of states



  

Current Status

● Experimental prototype for C, for early 
adopters only.

● But has found CVE-2020-1967 in 
OpenSSL, a NULL pointer dereference 
in error handling.
– and various error-handling bugs in elfutils

https://www.openssl.org/news/secadv/20200421.txt


  

Strengths and Limitations

● Interprocedural, with LTO support
– ...but current implementation of call 

summaries is just a placeholder



  

Strengths and Limitations 
(2)

● Cute ASCII art showing control flow
– ...but it’s too verbose, and can 

overwhelm the user



  

Strengths and Limitations 
(3)

● GCC 10 implementation of state had 
at least two major design flaws
– Led to explosions of state where state 

should have been merged but wasn’t



  

GCC 11 plans

● GCC development cycle is typically:
– April → October: 7 months of feature 

development
– November → March: 5 months of 

bugfixing/stabilization
– So about two more months of feature work 

for GCC 11



  

GCC 11 plans (2): 
unbreaking the basics

● Big rewrite of state-tracking
– Landed in trunk on 2020-08-13 (about 4 

months work)
– Fixed the two flaws mentioned earlier
– State explosions still happen, but are 

much more tractable



  

GCC 11 plans (3): scaling 
up to work on real code

● Fixing scaling issues so that -fanalyzer can be 
used on real-world C code
– State explosions
– Ludicrously verbose diagnostics

● e.g. for  CVE-2005-1689 (krb5 double-free)
– was 1187 lines of stderr
– GCC 10: 170 lines
– trunk: 57 lines
– Ideal: even lower



  

GCC 11 plans (4): new 
features

● Generalizing the malloc/free and FILE checking to 
arbitrary acquire/release API pairs
– An attribute for labeling function decls as acquire/release pairs

● Start on C++ support
– new/delete needs the above
– Exception-handling
– ...etc

● Lots more ideas...



  

Future Plans

● Other state machines
– Prototype of taint analysis
– Prototype of information leakage

● Bounds-checking
● Plugin support

– Kernel ideas?
● User space vs kernel space pointers
● Interrupts enabled vs disabled



  

Q&A

● Thanks for listening!
● Thanks to LPC for hosting us
● Project homepage:

https://gcc.gnu.org/wiki/DavidMalcolm/
StaticAnalyzer

https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer
https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer


  

Bonus Slides



  

Why do it in compiler?

● Make it easy to verify that all your source is being checked
– Same source files, same preprocessor defines, etc

● Same parser
– "The C language does not exist; neither does Java, C++, and C#. While a 

language may exist as an abstract idea, and even have a pile of paper (a 
standard) purporting to define it, a standard is not a compiler. What 
language do people write code in? The character strings accepted by their 
compiler.” (Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, 
Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, Dawson 
Engler)

"A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in t
he Real World"

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
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