A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

GCC'’s -fanalyzer option

David Malcolm
<dmalcolm@redhat.com>

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

Overview

* What Is 1t?
* Implementation details

e Current strengths and limitations
e Plans for GCC 11
e |deas for future directions

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

The -fanalyzer option

 Added by me in GCC 10

» -fanalyzer enables a new interprocedural
pass, Implementing 15 new warnings

* Performs a much more expensive
analysis of the code than traditional

warnings

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

-Wanalyzer-double-free
-Wanalyzer-use-after-free
-Wanalyzer-free-of-non-heap
-Wanalyzer-malloc-leak

-Wanalyzer-possible-null-argument

-Wanalyzer-possible-null-
dereference

-Wanalyzer-null-argument
-Wanalyzer-null-dereference

New Warnings

-Wanalyzer-double-fclose
-Wanalyzer-file-leak

-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-use-of-pointer-in-
stale-stack-frame

-Wanalyzer-unsafe-call-within-
sighal-handler

-Wanalyzer-tainted-array-index

-Wanalyzer-exposure-through-
output-file

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

A simple example

)

p = malloc (
q malloc (

free (p);
free (p);

}

1
2
3
4
5
6
/
3
9
0

(-

demo.c:9:3: double-‘free’' of ‘p’' [i
9 | ;
f

‘test’: events 1-3

5 | char *p = ;
LINUX [
PLUMBERS |
CONFERENCE [allocated here
August24-28,2020 | EEV F |
8 | ;
[
[
| first ‘free’ here
9 | ;
|
| second ‘free’ here; first ‘free’ was at
demo.c:10:1: leak of 'q' [1 [

10 |
[
‘test’: events 1-2
char *qg = -

allocated here

‘q’' leaks here; was allocated at

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

9

Why?

* The earlier a bug Is found, the better

 Embedding checks in the compiler is the
earliest possible point

- ldeally, we will never hear about bugs found
by this feature: they’d get fixed in the Edit-
Compile-Debug cycle and never make it into
published patches/repositories

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Why? (2)

* The programmer can see the diagnostics as he or
she works on the code, rather than at some later

point.

— Belief: if the analyzer is fast enough and has a good
enough signal:noise ratio, many people would opt-in to
deeper but more expensive warnings

— I'm aiming for 2x compile time as my rough estimate of
what's reasonable in exchange for being told up-front
about various kinds of pointer snafu)

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

9

Why? (3)

* But clang-analyzer exists...

- GCC and llvm both exist
- We have two different FLOSS toolchains

 Competition is good
 GNU should have an analyzer in its toolchain

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Implementation Detalils

» Using state machines to model APIs

* E.Q.
- “PTR = malloc(...);”: PTR - unchecked
- “If (PTR)™:
* True edge: PTR - nonnull
* False edge: PTR - null

- “free(PTR);”: PTR - freed

- “free(PTR);” when PTR is “freed”:
* Warn about double-free of PTR

start

on M=malloc(...):' .~ on 'X=calloc(...);' on 'X = &EXPR;'

on 'X=allocal...);"on X=_builtin allocal...};'

FN(X)' with attribute ((nommull)): . ; ; .
- WaI:KII'pDS_sible NU&‘arg?;m il @ ‘free(X);

on'X =0;'

on leak: on 'free(X);":
Wamn('leak') Warmn('free of non-heap')

on leak:
Wammn('leak")

on 'free(X).": on ‘#X';
Warn('double-free') / Warn('use after free')

on =X

on 'FN(X) with attribute ((nonnull)):
Warn{'NULL deref') arni WULL

Wi arg'}

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Initial Approach

* What's the minimum viable analyzer for detecting double-
free bugs?

» Attempted to implement the approach from the Stanford
Checker

e But the diagnostics from my implementation were
Inscrutable

- Why is -fanalyzer warning about FOO ?

* How can it happen?
* |f I can’t debug this, how is the user meant to figure it out?

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

Revised Implementation

 Emit control-flow paths to the user

- Need to convince the user of the
correctness of the problem

- Without overwhelming them (not yet
achieved)

& Graph-based
Implementation

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

* Build an “exploded graph” combining both control-flow and state

- Adirected graph

- Each node is a (point, state) pair
— Terminology from "Precise Interprocedural Dataflow Analysis via Graph
Reachability” (Thomas Reps, Susan Horwitz and Mooly Sagiv) 1995

e Detect problems when unexpected state occurs at a point

 Same approach as used by clang analyzer

* Tension between precision of state-modeling vs ensuring
termination and not bloating memory

T stngT (TTan

a2
true (flags TRUEL VALDE)

EN: 84

bise (t1ags raLsas true (Mags

it Yt

EN: 97 (merger) EN: 96 (mergen) EN: 267

CLEN3E e 2
true (flags TRUE_MALUE)

EN: 269 EN: 100 EN:98 EN: 268
true fflagq TRUE_VALPE) W

true (flags TRU
o EN:271 EN: 102 En: 99

TSN TES o bt vmz,?\
En: 1 | En:272 En: 103 (OGPEREAIIHRE: 273

IR
(flags FALLTHRY
EN:10a EN:274

SRTT BB 2Y

ben: s EN:275 EN: 106
o Tob: 29)
true (flags TRUE VA
i EN: 108 - £ = EN: 4 EN: 107
; D e cegs b Al A e o o T
Eni278 EN:110 true (flags TRUE VALUEL BN 563 LENia1s EN:2so | en: 277 EN: 304 (e (riags raLSE vALUE) | ENG S |

RUE VAN RYE VALUE)

SNTA3(6E 34) |

SR 30 (65 30y

e (flags FALS!
EN:310 EN: 145 (merger) EN: 139

(flags FALSE_VALUE)

EN:161 EN: 325 TRue vaLue) EN: 318 EN: 154 EN: 116 En

(flags FALLTHRU,
Hag e (Ma,

A
,,,,,,,,,,,, . false (flag} PALSE \BLUE)
5.3 W7 4% o 1
. ‘onlem meimm . . i e
o e (fdos TRUE_ALUD
: fatse (flags FALSE_valUERY" 35 (58 o a
e ‘pmite e i AN F o ol i e e B kg vy, Y, e
- T
fatse raokf o ootk GRS (iags paLSE vALUE) !
! 168 Ewishz Emiass | lenizo en:3ss e naas ARG UAIGE el VRS ENii50 EN:Zes || EN:i24 ENigez || ENi127 ENi%8S || EN:313| EN{148 e
| (ags PALLTHALD | | : o ; ; o ; e
: ; FECTI Y | ; e L
| ! (fags TRUE PEENCTIE | | U0t o ooy TRUE_vathsE)
| En: 170 (merger) En:i7s EN: 343 | e enil7z En: D lens2s eniise | Ten:sha En:1B0 || Emisi Eniges || EN:d2s Ewibs || En:ize enibes 1) En:ads
i (o FALLTHAL) ; | | 0 = - = o -
: : : | R v oo =
i i : : | tofee (flags rpse NaLBY ¥ TRGE T oo R e Parems)
| b malm R H R Thnlss Enien || ENiGer Eni%es) || EniDne BN asa || wioas Eneia || ewiise Eniass ERPBGB-CEMWoe enizos En S997 ALTHE
| (— ~ v N e — _— i |
i 1l SNi52 b 54 i B
| fatse (f&; raLsE AL LR EDen Sup N l l RSP IRD, eriae ALt v i / :
; en: 181 |l EN:aas Em:1e2 | ENi174 Enca3s || EN:177 EN: 341 EN: 328 (mergen EN: 164 (merger) | || EN:317 EN:153 || EN:246 EN:183 || EN:133 (merger) EN: 334 (mergen) e 301 ;
! (lags AT P (ags FALT \ /]
| En: 349 En: 186 EN: 178 (merger) EN: 342 (merger) EN: 354 LEN: 347 EN:1sa En: 135 En: 302 |
! | S ¢
| fags FaLLTHR) i W e L e e N S
len:hso en:ier EN: 356 EN: 355 (mérgen EN: 348 (mérger) EN: 185 (merger) 4 envize : e maos ARHEVRLRES cleI38 60 R o
YT A ~.! . i g i
Ten st en:hes . en: 357 tmergen en: 358 : Hen'os enzes :
= A :
true (fags TRUE VALLS o o b
EN: 359 3 Il EN:94 EN: 265 EN:57 EN: 228 | EN: 54 Er

En: 360 EN:140 En: 305 En: 353

& Soundness and
completeness?

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

 Different communities have different definitions, one is:
- “Soundness”: no false negatives
- “Completeness”: no false positives

» -fanalyzer is neither sound nor complete
— It attempts to explore "interesting"” paths through the code and
generate meaningful diagnostics
— but it will merge states to try to keep the analysis tractable

- and the states are abstract
* over-approximations in some ways, under-approximations in others

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Integration within GCC

* Works on GIMPLE SSA
— | chose this in the hope of making it easier to support
LTO
— But puts it at the mercy of optimization options, perhaps
should run earlier?
* The implementation is read-only: it doesn’t attempt
to change anything, just emit warnings

* Assumes garbage-collector doesn’t run

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

9

Algorithm

* First: build the exploded graph

— Worklist of (point, state) nodes
* Priority queue (e.g. group points together)

* Merge nodes at a point when states are
sufficiently similar

- Prepopulate worklist with entrypoints to the
public functions of the TU

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Algorithm (2)

* First: build the exploded graph (continued)
- Process (point, state) nodes in the worklist
- Record diagnostics in node (e.g. “double free”)

- Find successor nodes, add edges

e Cache hits vs cache misses

 |deally converge on a solution where we’re hitting pre-existing nodes
— Give up when limits are hit

* Too many states at one point

* Too many nodes overall

A\

LINUX
PLUMBERS

Algorithm (3)

CONFERENCE

222222222222222

Having built the graph and saved
diagnostics...

* Deduplicate diagnostics: partition
them

- find the shortest feasible path for each
partition

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Algorithm (4)

* Build a list of events along the path

* Apply peephole optimizer to try to only show the
most pertinent events

* Emit the diagnostic

- Precision-of-wording hooks:
* returning possibly-NULL pointer to 'make_obj' from
‘allocator’
* second 'free' here; first 'free' was at (1)

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

C iIs hard

* Arbitrary pointers

e Casts and unions
e setimp/longjmp

* Dynamic allocation
e efc...

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

9

Tracking state

* Abstraction of possible states of
variables and memory

- Hierarchy of “regions” e.g.:

e The stack
- Frame for current function

* Alocal array
* An element within the array

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Tracking state (2)

* Symbolic values:

Constants

Initial value of a region
* e.g. initial value of “ptr - field” at the start of the analysis path

Pointer to a region (e.g. “&X")
Compound values (e.g. “x +y”)

“Conjured values” at a statement (e.g. when an escaped region could be
clobbered by a call to an external function)

“Unknown” for when we need to give up
etc

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Tracking state (3)

* Program state has 4 parts:
- A“store”: bindings from regions to values

— Constraints (e.qg. “INIT_VAL(p) = 0”)
— The list of function frames in the stack [*]
- State-machine states [*]

e e.g. malloc: “INIT_VAL (p_23)": “unchecked”

* e.g. signal: global state: “in signal handler”
[*] == can prevent merging of states

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

Current Status

* Experimental prototype for C, for early
adopters only.

* But has found CVE-2020-1967 In
OpenSSL, a NULL pointer dereference
In error handling.

— and various error-handling bugs in elfutils

https://www.openssl.org/news/secadv/20200421.txt

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

Strengths and Limitations

 |nterprocedural, with LTO support

- ...but current implementation of call
summaries Is just a placeholder

& Strengths and Limitations
(2)

e Cute ASCII art showing control flow

— ...but It's too verbose, and can
overwhelm the user

LINUX
PLUMBERS
CONFERENCE

222222222222222

& Strengths and Limitations
(3)

 GCC 10 implementation of state had
at least two major design flaws

- Led to explosions of state where state
should have been merged but wasn't

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

9

GCC 11 plans

» GCC development cycle is typically:
— April - October: 7 months of feature
development
- November - March: 5 months of
bugfixing/stabilization
— So about two more months of feature work
for GCC 11

& GCC 11 plans (2):
unbreaking the basics

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

* Big rewrite of state-tracking

- Landed in trunk on 2020-08-13 (about 4
months work)

- Fixed the two flaws mentioned earlier

— State explosions still happen, but are
much more tractable

& GCC 11 plans (3): scaling
up to work on real code

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

* Fixing scaling issues so that -fanalyzer can be
used on real-world C code

- State explosions

— Ludicrously verbose diagnostics
e e.g. for CVE-2005-1689 (krb5 double-free)

- was 1187 lines of stderr
- GCC 10: 170 lines

— trunk: 57 lines

- ldeal: even lower

& GCC 11 plans (4): new
features

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

* Generalizing the malloc/free and FILE checking to
arbitrary acquire/release API pairs
— An attribute for labeling function decls as acquire/release pairs

e Start on C++ support
- new/delete needs the above

— Exception-handling
- ...etc
* Lots more ideas...

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Future Plans

* Other state machines
- Prototype of taint analysis
— Prototype of information leakage

* Bounds-checking

* Plugin support

- Kernel ideas?
» User space vs kernel space pointers
* Interrupts enabled vs disabled

A\

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020

Q&A

* Thanks for listening!
* Thanks to LPC for hosting us

* Project homepage:
https://gcc.gnu.org/wiki/DavidMalcolm/
StaticAnalyzer

https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer
https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer

Bonus Slides

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

A\

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Why do it in compiler?

* Make it easy to verify that all your source is being checked
— Same source files, same preprocessor defines, etc

e Same parser

- "The C language does not exist; neither does Java, C++, and C#. While a
language may exist as an abstract idea, and even have a pile of paper (a
standard) purporting to define it, a standard is not a compiler. What
language do people write code in? The character strings accepted by their
compiler.” (Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton,
Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, Dawson
Engler)

"A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in t
he Real World"

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

	Title
	Overview
	What is it?
	New Warnings
	Simple Example
	Simple Example (2)
	Rationale
	Rationale (2)
	Rationale (3)
	Implementation Details
	Example State Machine
	Initial Approach
	Revised Implementation
	Graph-based Implementation
	Exploded Graph Example
	Soundness/completeness
	Integration within GCC
	Algorithm
	Algorithm (2)
	Algorithm (3)
	Algorithm (4)
	C is hard
	Tracking state
	Tracking state (2)
	Tracking state (3)
	Current Status
	Strengths and Limitations
	Strengths and Limitations (2)
	Strengths and Limitations (3)
	GCC 11 plans
	GCC 11 plans (2)
	GCC 11 plans (3)
	GCC 11 plans (4)
	Future Plans
	Q&A
	Bonus Slides
	Why do it in the compiler?

