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Overview

* What Is 1t?
* Implementation details

e Current strengths and limitations
e Plans for GCC 11
e |deas for future directions
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The -fanalyzer option

 Added by me in GCC 10

» -fanalyzer enables a new interprocedural
pass, Implementing 15 new warnings

* Performs a much more expensive
analysis of the code than traditional

warnings
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-Wanalyzer-double-free
-Wanalyzer-use-after-free
-Wanalyzer-free-of-non-heap
-Wanalyzer-malloc-leak

-Wanalyzer-possible-null-argument

-Wanalyzer-possible-null-
dereference

-Wanalyzer-null-argument
-Wanalyzer-null-dereference

New Warnings

-Wanalyzer-double-fclose
-Wanalyzer-file-leak

-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-use-of-pointer-in-
stale-stack-frame

-Wanalyzer-unsafe-call-within-
sighal-handler

-Wanalyzer-tainted-array-index

-Wanalyzer-exposure-through-
output-file
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A simple example

)

p = malloc (
q malloc (

free (p);
free (p);

}
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demo.c:9:3: double-‘free’' of ‘p’' [ i
9 | ;
f

‘test’: events 1-3

5 | char *p = ;
LINUX [
PLUMBERS |
CONFERENCE [ allocated here
August24-28,2020 | EEV F |
8 | ;
[
[
| first ‘free’ here
9 | ;
|
| second ‘free’ here; first ‘free’ was at
demo.c:10:1: leak of 'q' [ 1 [

10 |
[
‘test’: events 1-2
char *qg = -

allocated here

‘q’' leaks here; was allocated at
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Why?

* The earlier a bug Is found, the better

 Embedding checks in the compiler is the
earliest possible point

- ldeally, we will never hear about bugs found
by this feature: they’d get fixed in the Edit-
Compile-Debug cycle and never make it into
published patches/repositories
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Why? (2)

* The programmer can see the diagnostics as he or
she works on the code, rather than at some later

point.

— Belief: if the analyzer is fast enough and has a good
enough signal:noise ratio, many people would opt-in to
deeper but more expensive warnings

— I'm aiming for 2x compile time as my rough estimate of
what's reasonable in exchange for being told up-front
about various kinds of pointer snafu)
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Why? (3)

* But clang-analyzer exists...

- GCC and llvm both exist
- We have two different FLOSS toolchains

 Competition is good
 GNU should have an analyzer in its toolchain
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Implementation Detalils

» Using state machines to model APIs

* E.Q.
- “PTR = malloc(...);”: PTR - unchecked
- “If (PTR)™:
* True edge: PTR - nonnull
* False edge: PTR - null

- “free(PTR);”: PTR - freed

- “free(PTR);” when PTR is “freed”:
* Warn about double-free of PTR



start

on M=malloc(...):' .~ on 'X=calloc(...);' on 'X = &EXPR;'

on 'X=allocal...);"on X=_builtin allocal...};'

FN(X)' with  attribute ((nommull)): . ; ; .
- WaI:KII'pDS_sible NU&‘arg?;m il @ ‘free(X);

on'X =0;'

on leak: on 'free(X);":
Wamn('leak') Warmn('free of non-heap')

on leak:
Wammn('leak")

on 'free(X).": on ‘#X';
Warn('double-free') / Warn('use after free')

on =X

on 'FN(X) with  attribute ((nonnull)):
Warn{'NULL deref') arni WULL

Wi arg'}
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Initial Approach

* What's the minimum viable analyzer for detecting double-
free bugs?

» Attempted to implement the approach from the Stanford
Checker

e But the diagnostics from my implementation were
Inscrutable

- Why is -fanalyzer warning about FOO ?

* How can it happen?
* |f I can’t debug this, how is the user meant to figure it out?
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Revised Implementation

 Emit control-flow paths to the user

- Need to convince the user of the
correctness of the problem

- Without overwhelming them (not yet
achieved)




& Graph-based
Implementation

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

* Build an “exploded graph” combining both control-flow and state

- Adirected graph

- Each node is a (point, state) pair
— Terminology from "Precise Interprocedural Dataflow Analysis via Graph
Reachability” (Thomas Reps, Susan Horwitz and Mooly Sagiv) 1995

e Detect problems when unexpected state occurs at a point

 Same approach as used by clang analyzer

* Tension between precision of state-modeling vs ensuring
termination and not bloating memory
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 Different communities have different definitions, one is:
- “Soundness”: no false negatives
- “Completeness”: no false positives

» -fanalyzer is neither sound nor complete
— It attempts to explore "interesting"” paths through the code and
generate meaningful diagnostics
— but it will merge states to try to keep the analysis tractable

- and the states are abstract
* over-approximations in some ways, under-approximations in others
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Integration within GCC

* Works on GIMPLE SSA
— | chose this in the hope of making it easier to support
LTO
— But puts it at the mercy of optimization options, perhaps
should run earlier?
* The implementation is read-only: it doesn’t attempt
to change anything, just emit warnings

* Assumes garbage-collector doesn’t run
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Algorithm

* First: build the exploded graph

— Worklist of (point, state) nodes
* Priority queue (e.g. group points together)

* Merge nodes at a point when states are
sufficiently similar

- Prepopulate worklist with entrypoints to the
public functions of the TU
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Algorithm (2)

* First: build the exploded graph (continued)
- Process (point, state) nodes in the worklist
- Record diagnostics in node (e.g. “double free”)

- Find successor nodes, add edges

e Cache hits vs cache misses

 |deally converge on a solution where we’re hitting pre-existing nodes
— Give up when limits are hit

* Too many states at one point

* Too many nodes overall




A\

LINUX
PLUMBERS

Algorithm (3)

CONFERENCE

222222222222222

Having built the graph and saved
diagnostics...

* Deduplicate diagnostics: partition
them

- find the shortest feasible path for each
partition
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Algorithm (4)

* Build a list of events along the path

* Apply peephole optimizer to try to only show the
most pertinent events

* Emit the diagnostic

- Precision-of-wording hooks:
* returning possibly-NULL pointer to 'make_obj' from
‘allocator’
* second 'free' here; first 'free' was at (1)
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C iIs hard

* Arbitrary pointers

e Casts and unions
e setimp/longjmp

* Dynamic allocation
e efc...
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Tracking state

* Abstraction of possible states of
variables and memory

- Hierarchy of “regions” e.g.:

e The stack
- Frame for current function

* Alocal array
* An element within the array
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Tracking state (2)

* Symbolic values:

Constants

Initial value of a region
* e.g. initial value of “ptr - field” at the start of the analysis path

Pointer to a region (e.g. “&X")
Compound values (e.g. “x +y”)

“Conjured values” at a statement (e.g. when an escaped region could be
clobbered by a call to an external function)

“Unknown” for when we need to give up
etc
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Tracking state (3)

* Program state has 4 parts:
- A“store”: bindings from regions to values

— Constraints (e.qg. “INIT_VAL(p) = 0”)
— The list of function frames in the stack [*]
- State-machine states [*]

e e.g. malloc: “INIT_VAL (p_23)": “unchecked”

* e.g. signal: global state: “in signal handler”
[*] == can prevent merging of states
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Current Status

* Experimental prototype for C, for early
adopters only.

* But has found CVE-2020-1967 In
OpenSSL, a NULL pointer dereference
In error handling.

— and various error-handling bugs in elfutils



https://www.openssl.org/news/secadv/20200421.txt
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Strengths and Limitations

 |nterprocedural, with LTO support

- ...but current implementation of call
summaries Is just a placeholder




& Strengths and Limitations
(2)

e Cute ASCII art showing control flow

— ...but It's too verbose, and can
overwhelm the user

LINUX
PLUMBERS
CONFERENCE
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& Strengths and Limitations
(3)

 GCC 10 implementation of state had
at least two major design flaws

- Led to explosions of state where state
should have been merged but wasn't

LINUX
PLUMBERS
CONFERENCE
August 24-28, 2020
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GCC 11 plans

» GCC development cycle is typically:
— April - October: 7 months of feature
development
- November - March: 5 months of
bugfixing/stabilization
— So about two more months of feature work
for GCC 11
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* Big rewrite of state-tracking

- Landed in trunk on 2020-08-13 (about 4
months work)

- Fixed the two flaws mentioned earlier

— State explosions still happen, but are
much more tractable
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* Fixing scaling issues so that -fanalyzer can be
used on real-world C code

- State explosions

— Ludicrously verbose diagnostics
e e.g. for CVE-2005-1689 (krb5 double-free)

- was 1187 lines of stderr
- GCC 10: 170 lines

— trunk: 57 lines

- ldeal: even lower
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* Generalizing the malloc/free and FILE checking to
arbitrary acquire/release API pairs
— An attribute for labeling function decls as acquire/release pairs

e Start on C++ support
- new/delete needs the above

— Exception-handling
- ...etc
* Lots more ideas...
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Future Plans

* Other state machines
- Prototype of taint analysis
— Prototype of information leakage

* Bounds-checking

* Plugin support

- Kernel ideas?
» User space vs kernel space pointers
* Interrupts enabled vs disabled
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Q&A

* Thanks for listening!
* Thanks to LPC for hosting us

* Project homepage:
https://gcc.gnu.org/wiki/DavidMalcolm/
StaticAnalyzer



https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer
https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer

Bonus Slides
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Why do it in compiler?

* Make it easy to verify that all your source is being checked
— Same source files, same preprocessor defines, etc

e Same parser

- "The C language does not exist; neither does Java, C++, and C#. While a
language may exist as an abstract idea, and even have a pile of paper (a
standard) purporting to define it, a standard is not a compiler. What
language do people write code in? The character strings accepted by their
compiler.” (Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton,
Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, Dawson
Engler)

"A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in t
he Real World"


https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
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